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(Received 24 January 1966) 

Abstract-The mechanism of nucleate boiling from a superheated surface is studied fluid-dynamically 
and thermodynamically. 

The asymmetry of the fluid-dynamical field associated with the existence of a heating surface causes the 
bubbles to move away from the surface with a nearly constant speed, while the surface area of the bubbles 
increases linearly with respect to time. The time interval between bubble formation and departure is 
proportional to the third power of the radius of the bubble. The consideration of the velocity and tempera- 
ture fields in the vicinity of the heating surface provides a relation between the period of the bubble cycle 
and the amount of superheat. The period is proportional to the third power of the radius of the bubble, 
when the fields interact strongly on each other, and to the second power when they do not. The radius of 

a bubble is inversely proportional to the amount of superheat. 

NOMENCLATURE 2, co-ordinate perpendicular to the heat- 
specific heat at constant pressure ; ing surface; 
latent heat of evaporation of liquid ; zo, distance from the heating surface to the 
enthalpy ; spherical centre of bubble; 
= JXR,T,); z*, 
pressure in the fluid outside the bubble ; 

= 2 0 T,R,I(p,L). 

pressure inside the bubble ; Greek symbols 
heat flux through the liquid-vapour 
interface of the bubble ; 
radial co-ordinate ; 
distance from the spherical centre of 
bubble ; 
radius of bubble ; 
gas constant ; 
area of the liquid-vapour interface 
of the bubble; 
time ; 
period from the departure of bubble 
to the new bubble formation ; 
period from the bubble formation to 

thermal diffusivity of liquid ; 
defined by equation (2.3) ; 
defined by equation (2.18); 
toroidal co-ordinates, equation (1.3) ; 

= (T - T,Y(T, - T,); 
thermal conductivity of liquid; 
velocity potential; 
kinematic viscosity of liquid; 
density of liquid outside the bubble; 
density of vapour inside the bubble; 
surface tension ; 
angle defined in Fig. 1. 

its departure; Subscripts 
temperature in the fluid outside the 0, vapour inside the bubble ; 
bubble ; 4 at the departure of bubble; 
temperature inside the bubble; e, at the generation of bubble. 
temperature at z = cc (saturation 
temperature of liquid at p,); INTRODUCTION 

components of velocity of the fluid 
(Fig. 1) ; 

THE MECHANISM of nucleate boiling is still not 

volume of bubble ; 
well understood, despite its great technical 
importance and a number of experimental and 
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theoretical works, several of which describe 
some features of the boiling process quite well. 
Observations show that the mechanism which 
causes the bubble to depart from the heating 
surface cannot be attributed only to buoyancy 
forces, that is, to the effect of acceleration of 
gravity, which has a dominant influence upon 
the departure process of bubbles of com- 
paratively large radius, that is, at the lower 
superheat. For higher superheat, the departure 
process is therefore governed by a different 
mechanism, a fluid-dynamical and thermo- 
dynamical one, which reveals itself more evi- 
dently when the field has an asymmetrical 
geometry-a plane solid heating surface. To 
make the mechanism clear, it is necegsary to 
analyse the process of nucleate boiling hydro- 
dynamically and thermodynamically. Concern- 
ing nucleate boiling carried out in a superheated 
or subcooled liquid without any solid heating 
surface, a number of theoretical studies have 
been made recently [l-4], though the physics 
of practical nucleate boiling with solid heating 
surfaces has not yet been disclosed. 

The object of the present study is to treat the 
process of nucleate boiling in a saturated liquid 
on a solid heating surface-the formation of an 
embryonic bubble on the heating surface, its 
growth and its departure from the surface- 
from the fluid-dynamical and thermodynamical 
point of view. 

GROWTH AND DEPARTURE PROCESS 

In the course of this process, the following 
assumptions are made; (1) the effects of the 
acceleration of. gravity, the viscosity and the 
compressibility of the liquid are neglected, (2) 

KOTAKE 

the shape of the bubble is that part of the sphere 
of radius R,, with centre z,, over the heating 
surface (see Fig. l), and (3) the vapour inside 
the bubble is saturated corresponding the 
pressure inside the bubble. 

First, we consider the motion of the liquid 
associated with the motion of the bubble-its 
growing in size attached to the heating surface 
until the departure from it. The equation of 

FIB;. 1. Co-ordinates. 

continuity concerning the liquid surrounding 
the bubble is 

(1.1) 

The boundary conditions of equation (1.1) are 
provided by the facts that the normal compo- 
nent of the velocity of the liquid vanishes on the 
heatink surface, and the velocity of the liquid 
normal to the liquid-vapour interface is given 
as the sum of those associated with the growth 
of the bubble and its motion in the z-direction; 
namely 

w=o at z=O 

v.R = I&, + i,coscp at R=R,. (1.2) 

Using toroidal co-ordinates (r], w) 

I= R, 
sinh w 

z = R, 
sin r] 

coshw + cos ~1’ cash o + cos rl 
(1.3) 
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and the velocity potential, 4, defined as 

we can rewrite equation (1.1) as 

a - 
am 

Putting 

a4 w 
u=g w=z 

0. 
c0sh 0 + cos q a? 

we obtain 

4 = ,/(cosh o + cos q) f(q) g(cosh w) 

4 = J(s + cos q) 7 [A(A) sinh Iv + B(I) cash 1~1 Pil_,&) dl 
0 

(1.4) 

(1.5) 

(1.6) 

where 

s = cash w, P. _ IA n/2 
(s) = &oshla m cosArdr 

n s o &osh C + s) ’ 

With the relations 

the boundary conditions, (1.2) are reduced to 

If we find the solutions of equation (1.5) & and c$~, 
which satisfy the following boundary conditions, 

the solution of equation (1.5) can be expressed as 

4 = $1 + $2. 

With equations (1.2”) and (1.6) and the equality 

m 
1 

J(s + cos ?) 
= 

JS 
2 cash Iv sech ATT P,_,,,(s) dl, 

0 
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q!~ 1 and C& are given as follows : 

SUSUMU KOTAKE 

m 

91 = J(s + cosq) s R, cot qO. (I?,, + i. cos r],) (J2) cash 1~, sech kc 

o i[sin q&l + cos Q,)] cash I(qO - X) - I sinh I(r], - rc) 

X cash n(r/ - X) Pi>._n/Z(s) dL 

z 2(J2) R, cot yI0. (k, + i, cos rjo) ’ zin”;“,” & + cos q) j cash Lq, 

0 

x sech ln cash A(V - ‘d 

cosh4rlo - 71) PiA-n/AS) dl 

m 

fpz = - J(s + cos q) s R, cot q. . i. sin’ ‘lo [2(,/2)/sin qo] 1 sinh iv, sech kc 

o Gin qo/(l + cost,)] cash@, - n) - Asinh,Qo - K) 

X COsh L(q - 7~) P,_,/,(S) d1 

z - 4(,/2) Roio cot ‘lo. (1 + cos qo) J(s + cos q) 7 1 sinh lqo 
0 

x sech An cash ‘% - xn) 
cash A(v], - n) 

PiA-n/,(S) dA 

Accordingly, 

&s, ?I = 2(x/2) Ro cot ylo l ?$J(s + cos,) 

x jRR0 + i, cos qo) cash Rq, - 2io sin ‘lo,4 sinh Lq,] sech Rn 
cash 1(~ - n) 

cash L(qo - n) 
P,_,,,(s) d;l. (1.7) 

0 

4(s, rl) = 2Ro 1 ;%z;‘lo + i. cos qo) + 

Next, consider the equation of motion of the liquid. Integrating the equation over the whole 
domain of the liquid, C (whose boundary is denoted as S), with the assumption that, at infinity, the 
velocity vanishes and the pressure approaches pm, yields 

-~~~~dr+iSv.ndS+SO,-p,)dS=O 

P s s 

where n is a unit vector normal to the boundary. The first term in the left-hand side of the above 
equation can be expressed in the form of a surface integral, to which the surface of the heating wall 
has no contribution. Therefore, the above equation becomes 
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where S, is the area of the liquid-vapour interface of the bubble. Equation (1.9) is one of the equa- 
tions of motion of the bubble. Since the boundary condition for the equation of motion of liquid is 
given by 

p. = ; 
0 s 

pso dS, + ; 
0 

(1.10) 

so 

the fourth term in the left-hand side of equation (1.9) is 
20 

PO-Pm-R So. 
0 > 

The consideration of the motion of the bubble in the z-direction yields the other equation of 
motion of the bubble as 

$$fd$ = - 
s 

pv.ndS, + i,[(p, - p,)nR$ - asincp,2rrR,] (1.11) 

SO 

where A4 is the mass of the bubble, p. the pressure inside the bubble, c the surface tension of liquid. 
With the relations 

and the assumption p. e p, equation (1.11) becomes 

q(G)sodso + J 
so 

v2~dSo=~io(p,+~-p,)nR:. 

From equation (1.7) 

Substituting equation (1.13) and the relation 

%dSo = a@; - (z - zo,'] dz 

at 

into equations (1.9) and (1.12), we obtain 

(1.12) 

\ 

) (1.13) 

/ 

(1.14) 
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-4; [zo {R$VJ + R,&&(R, - ze) + ii;@; - R,z, + zi)}] 

+2R,,&(d; + i$o(, + zO) + (3& + ii)@; - z;) + 4 !!$@i + z;) 
0 

2 
=- 

P 
+ f - PO i&x; - z;,. 1 (1.15) 

0 

The pressure inside the bubble, PO, which is 
involved in equations (1.14) and (1.15) can be 
related to the temperature inside the bubble, 
To, by the assumption (3) which implies the 
condition of saturation of the vapour inside 
the bubble, that is, the Clausius-Clapeyron 
relation 

where pe and T, are the pressure and the tem- 
perature of the vapour inside an embryonic 
bubble, respectively, at the time of the bubble 
initiation (t = 0), L latent heat of vaporization, 
and R, gas constant of the vapour. Since 
IT, - ToI 4 To, the above equation is rewritten 
as 

PO - Pe L To - T, 
-----= -~ 

me RJL T, . 
(1.16) 

The temperature of the vapour inside the 
bubble, To, is given by the relation of the energy 
transfer through the interface of the bubble. 
If the growth rate of the bubble is large com- 
pared with the rate of heat conduction in the 
vicinity of the interface, the variation in the 
temperature field of the liquid associated with 
the growth of the bubble should be confined 
within a narrow layer near the interface. 
Isshiki [5] observed these features of the 
temperature field by an optical method, so 
that the treatment similar to that carried out by 
Plesset-Zwick [6, 71 for the case of the growth 
of a bubble without any solid heating surface 
can be used to obtain the temperature field 
of the liquid surrounding the bubble. 

Since we can usually assume that the thick- 
ness of the temperature boundary layer on the 
liquid-vapour interface of the bubble is so 
thin compared with the radius of the bubble 
that the curvature of the liquid-vapour inter- 
face should hardly affect the temperature field, 
the equation of energy with the co-ordinate, x, 
whose origin is on the liquid-vapour interface, 
becomes 

dZT 1LJT ----_= 
a2 u at 

0 (1.17) 

whose boundary conditions are 

g =_f@) at x = 0, 

T = T,(z) at x=co (1.18) 

where f(t) denotes a quantity proportional to 
the amount of heat flow through the liquid- 
vapour interface into the bubble, defined as 

4 = r~f(f) 2 xR; sin cp dq = d(t) So (1.19) 

where K is the thermal conductivity of the 
liquid. T,(z) is the temperature at the point far 
from the liquid-vapour interface and, with 
the assumption of a thin boundary layer of 
temperature, can be replaced by the tempera- 
ture at the point on the plane parallel to the 
heating surface and far from the liquid-vapour 
interface, that is, from equation (2.14), 

z/(2 Jr@. + Ql) 
T,(z) = T, - (T, - T,)(2/&) j 

0 

x exp [-(“I d5 (1.20) 

where T, is the temperature of the heating sur- 
face, T, that of liquid at z = co, that is, the 
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saturation temperature corresponding to the 
pressure pm, and t, the time interval from the 
departure of the bubble to the generation of 
the next embryonic bubble. 

Taking the Laplace transform of T,f(t) and 
T,, denoted as 0, F(s) and O,, respectively, we 
obtain from equation (1.17) 

O(x,s = -J(a/s) F(s) exp [ -J(s/a)xl + O,(s). 

Accordingly, the temperature of the liquid in 
the vicinity of the bubble is 

TM = -J(a/n) 
’ fk) 

s 
(t 

0 

x exp [ - x2/4a(t - r)] dz + T,(z) (1.21) 

and the temperature of the liquid at the liquid- 
vapour interface is 

T(W) = L(z) - ,/(a/4 ’ f(4 s (t dz. (1.22) 

0 

If a mean value of the above obtained tempera- 
ture, an area-mean for simplicity, is used for 
the temperature of the vapour inside the 
the latter becomes 

Ro+zo 
1 

To = ~ 
Ro + zo s f 

T,(z) dz - &/4 

0 
s 
0 

.f(4 x (t-t)‘dz* 
Since T,(z) given by equation (1.20) 
nearly equal to T, for z 2 4 J[a(t, + 

is very 

t)], the 
first term in the right-hand side of equation 
(1.23) can be reduced to 

bubble, 

(1.23) 

R”~=oT,(z)dz = T,(R o + zo - z,) + 7 T,(z) dz 
0 

where z, = 4 ,/[a(te + t)]. Furthermore, since 
the second term in the right-hand side of the 
above equation is nearly equal to (T, + T,)zJ2, 
we obtain 

Ro+zo 
s T (z) dz c 
0 

T,(Ro + zo) + (7, - T,)z,/2. 

Considering this relation and f(t) = 0 for 
z > z, yields 

T,=T,+ & %T, - T,) - ,/(a/4 
0 0 [ s 

0 

f(4 x (tdT 
1 

(1.24) 

for R, + z. > z,. 
The rate of heat flow per unit time through 

the liquid-vapour interface into the bubble, 4, 
is given by 

(1.25) 

in which the contribution of the direct heat 
flow through the solid-vapour interface into 
the bubble is neglected. ho and h are enthalpies 
per unit mass of the vapour inside the bubble 
and of the liquid outside, respectively, and V, 
is the volume of bubble. EJ denotes the surface 
energy of the liquid-vapour interface of the 
bubble and is given by the following relation 

V. and So are obtained from Fig. 1 as 

V, = ; (R, + zo)2 (2R, - zo), 

So = 2nR,(R, + zo) . (1.26) 

Neglecting the effect of temperature upon the 
surface tension, we obtain from 
(1.19) and (1.25) 

f(t) = $ 
i 

Go KJ 
0 

PoxI%+ Ldt 

equations 

(1.27) 

Usually, the first and third terms in the right- 
hand side of the above equation are small 
enough to be neglected compared with the 
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second term, where (1.14) and (1.15) gives R,, z2, R,, z3, etc., as 

(1.27’) 

Now, all quantities in the process of growth 
and departure are predicted; the temperature 

R, =a2$, R, =a$ 

R% 

R,2 “’ 

R: 
(1.33) 

z2 = b, 1, 
R, 

z3 = b, -, . . 
R,2 

inside the bubble, T,, is obtained from the 
equation of energy of the bubble, (1.23) or 

where a, and b, are the roots of 

(1.24), the pressure inside the bubble, pO, from .&a1 + B,b, =C, 

the condition of the saturation of vapour (1.16) ALa2 + B=b, = Cz 
and R, and z0 from the equations of motion in in which 
the I- and z-directions, (1.14) and (1.15). 

Let us consider the process shortly after the A, = 2 
generation of an embryonic bubble. Expanding 
R, and .a0 with respect to time, we obtain 

B, = 1 _ 
cos (Pe 

4 

R, = R, + R,t + R,t2 + . . . . c, = ,[$ - 

(1.28) 
2 cos (Pe 

z(J = z, + z,t + z2t2 + . . . - 

4 cos (Pe - 7 cos2 (Pe 

3 cos3 (Pi - m, (1 + cos cp,)] 

R, and z,, and R, and z1 have the following AZ = 2 + cos (Pe - cos’ (P= 
relations from equations (2.39) and (2.40) which 
are to be mentioned later. 

B, = 1 _ + cos rp, _ f cos2 (Pe + 5 co83 qe 

z, = R, cos qe, z1 = R, cosq,. 
c, = ~ ’ [2-7coscp,-~cos2cp, 

8 cos (Pi 

The same procedure of expansion of T, and p0 + 8 cos3 (Pa + 4 cos4 (Pi - y cos5 (Pi 

gives - m, cos qe (1 - cos’ cp,)] 

T, = T,(l + c,t + c2t2 + . . .) (1.29) and a3 and b, are the roots of 

po = p,(l + c,Ht + c2Ht2 + . . .) (1.30) A;a, + B:b3 = C: 

where H = L/(R$T,). Assuming that the vapour 
Aka, + Bib, = CL 

inside the bubble should obey the law of state in which Ai, AL, BL and B: are functions of cos (Pi, 
of an ideal gas, we obtain from equations and Ci and Cz are functions of a,, b2, m,, ml 

and cos (Pi. m, and m, are the coefficients of (1.29) and (1.30) 

po = Pe [l + c,Ht + {c,(H - 1) 

- CfH} t2 + 

expansion 

Substituting equations (1.28) to 
equations (1.23) and (1.27) yields 

..]. (1.31) $ 
( 
Pa, + $ - PO 

R: 

0 > 
= m,Rf + m, R t + . . ., 

e 

(1.31) into 
(1.34) 

cl, c2, etc., 
that is, 

as functions of R,, R,, R,, z2, etc. ; for example, 

20 1 R, 
cl=--y-' 

Rep, HRe 
(1.32) 

2 1 R 

Substituting equation (1.28) into equations 
m, = --1-P 

PRI RI 
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For the case of nucfeate boiling of saturated 
pure water at atmospheric pressure with cos (Pi 
= 0.5, since me -$ 1 and m, E 0, 

R. = R, + R,t - 04334zt2 
e 

z. = 05 R, + 05 R,t 

+ 1f%8~t2 - 0250$t” + . . . 
e e I 

these are illustrated in Fig. 2. It is shown from 
the figure that the asymmet~ of the ffuid- 
dynamical field attributed to the existence of a 
solid heating surface, which is manifested in 
equations (1.14) and (1.15), should cause the 

1 I Ill I I I I 
0 0.5 I.0 

FIG. 2. Growth and departure motion shortly after 
bubble generation. 

bubble to move away from the heating surface 
immediately after its embryonic generation. 
Figure 3 shows the temperature and pressure 
inside the bubble shortly after formation. 

Next, let us consider the process immediately 
before the departure, t cz te At the time near to 
that of the departure, the temperature inside 

$’ 
c 

FIG. 3. Temperature and pressure inside a bubble 
shortly after generation. 

the bubble, T,, becomes nearly equal to the 
saturation temperature, T,, so that we obtain 
from equation (1.25) 

. 
4 523 bcJ b 

and from equation (1.27) 

f(t) x +lo. 
Substituting the above equation into equation 
(1.24) and putting To = T, yield 

+(T, - ;r,) = M: bo t fio(4 JO s - - -dr. (1.36) 
II Ic 

0 

In order that the right-hand side of equation 
(1.36) should be independent of time, it is 
required that 

where 

K, = & &lrJ (1.37) 

R =%- T,KR,T, 
d --J---&‘Lpco J(b). WV 

On the other hand, since the right-hand sides 
of equations (1.14) and (1.15) vanish at t z tdt 
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putting 

n (1.39) 

and neglecting the right-hand sides of those 
equations yield 

3m2 + 3mn - 2m - $n” = 0 

3m3 - 2m2 + 2m2n - $mn2 - $n’ + $n” = 0 

which give 

m = 0.51, n = 1.12. (1.40) 

The value of R, obtained is in accord with that 
given by equation (1.37). z0 is a linear function 
with respect to time. 

Figure 4 shows R, and z,, given by equation 
(1.39) with m = 0.5 and n = 1.0 together with an 

)- 

i- 

3 
%a * 0 0 

*o 
0 

0 

*ID9 
8’ 

*, 
- 4 0% 

/ 
* o,/ 

*P 
, / /I / 

*OQ 
I* ' 
4 0,' , 0 x 1 Experimental 

, /’ - : Eqdl.39) 

9’ 
m =0~5fl=I.O 

I.0 

FIG. 4. Growth and departure curves. 

experimental result of the nucleate boiling of 
saturated pure water on a heating surface of 
brass at atmospheric pressure measured photo- 
graphically with a high-speed camera (6000 
frames/s). Isshiki [S] reported a photographic 
study with the results similar to these. It should be 
noted from the figure that the relation of 
equation (1.39) with m = 0.5 and n = 1.0 could 
be valid not only for t z td but for a more 
extended range of time. 

GENERATION OF THE NEXT BUBBLE 

When a bubble departs from the heating 
surface, the liquid surrounding the bubble flows 
into the space between the bubble and the heat- 
ing surface. This motion of the liquid recom- 
poses the temperature field in the vicinity of 
the heating surface, so that the next bubble 
appears on the heating surface when the field 
satisfies the condition responsible for the genera- 
tion of an embryonic bubble. In this process of 
boiling, we make the following assumptions; 
(1) the acceleration of gravity is neglected, (2) 
the vapour inside and the liquid outside the 
bubble are of thermodynamic equilibrium so 
that the radius of the bubble remains constant 
at R, after its departure from the heating 
surface, where R, is the radius at the time of 
departure, (3) the temperature of the liquid 
immediately behind the bubble at the time of 
departure is T,, (4) an embryonic bubble 
appears on the heating surface the instant 
that the amount of superheat of liquid, T - T,, 
at the point of the spherical centre of a hypo- 
thetical embryonic bubble of radius R,, 
z, = R, cos cp,(cp,: contact angle), is enough to 
satisfy the Clausius-Clapeyron relation, (5) 
the temperature inside the embryonic bubble is 
equal to that of the liquid at the same position 
as the spherical centre of the bubble before 
its appearance, and (6) only the temperature 
field in the vicinity of the heating surface im- 
mediately behind the departed bubble (r z 0, 
zz 0) contributes to the generation of the 
bubble. 

Let the distance between the spherical centre 
of bubble and the heating surface be z0 and the 
velocity of the bubble be iO. If the effect of the 
viscosity of the liquid is neglected, the motion 
of the bubble has a velocity potential, 4, as 

4 = - 31 + &]io{rr2 +z;;;z)2,‘+ 

+ [r2 +‘Fz,” z)=]* I ’ 
(2.1) 

From equation (2. l), we obtain the components 



of the velocity of the bubble, u and w, in the 
I- and z-direction, respectively, in’ the vicinity of 
the heating surface immediately behind the 
bubble (r z 0, z G z,), which are 

where 
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where V, is the volume of bubble and the 
acceleration of gravity is not considered. Using 
equation (2.1) and the boundary condition. at 
the interface of the bubble, (a+/&),, = i, cos rp 
and since p,, G p, we qbtain from equation (2.8) 

,,[I +(3p(E!30. (2.9) 

The solution of equation (2.9) in the expansion 
form with respect to time is 

u = -/Jr, w = 2pz (2.2) 

P=3(!$[1 +;(:y]t_ (2.3) 

It should be noted that the flow field described 
by equation (2.2) is similar to that in the vicinity 
of the stagnation point of a solid body immersed 
in an axisymmetrical inviscid flow. From the 
stagnation flow analogy, let 

u = - r-‘(z), w = 2f(z) 

f(0) = f’(0) = 0, f’(c0) = p (2*4) 

satisfying the equation of continuity and the 
boundary conditions. Then, the equation of 
motion, introducing the viscous effect of the 
liquid, is reduced to 

f’2 - 2ff” = pz - vf”’ (2.5) 

where v is the kinematic viscosity of the liquid. 
Solving equation (2.5) with the expansion 
procedure off(z) around z = 0 gives 

+ 0.1667 [/(;)z]: . ...). (2.6) 

From equations (2.2) and (2.6), w can be ex- 
pressed approximately for z + z,, as 

w = 2@z(l - e+), 6 = 0656J(p/v). (2.7) 

The position of the spherical centre of the 

From the assumption (6), which concerns the 
temperature field contributing to the genera- 
tion of an embryonic bubble, we obtain the 
governing equation of the field as 

;+wg=$$ (2.12) 

where T, is the temperature of the heating 
surface, T, that of the liquid at z = co, and 

bubble, zO, and its velocity, i,, can be obtained 
from the equation of motion with respect to 
the bubble, which is expressed by a procedure 
similar to that used in the derivation of equation 
(1.11) as 

e= T-T,. 
T, - T, 

The boundary conditions of equation (2.12) are 
provided by the assumptions (4) and (6) as 

etz,o) = 0, e(o,t) = 1. (2.13) 

Let us now turn our attention to the two 
extreme cases; the one in which w is so small 

(2.10) 

where id is the velocity of the bubble at the 
time of departure, t = 0. Therefore, p becomes 

which implies that the velocity component in 
the z-direction, w, decreases rapidly with in- 
creasing time. 
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that the conduction term (the right-hand side 
of equation (2.12)) is much greater than the 
convection term (the second term in the left- 
hand side) and the other in which w is so large 
that the conduction term can be neglected. 

x (J(47ca) + 6 exp [cd2(t - t’)] [4fxJ(t - t’) 

In the former case of small w, taking the - 2,,/(4~c() CC@ - t’,]} dt’. (2.17) 

solution of equation (2.12) with w = 0,8(0)(z,t), 
The second approximation, Aot2’, can be ob- 

z/t2 *‘(at)1 

@O)(z t) = 1 - 2 
s 

tained similarly. fi can be approximated from 

J= 0 

exp [ - (21 dt (2.14) equation (2.11) as 

/J(t) = fro e-?’ (2.18) 

as a basic solution, we can obtain the successive 
solutions, P), f!Y2), etc., from 

where PO = 3&,/R, and for small t 

Y = 4&/R,. (2.19) 

pp) i a@") a@- 1) From equations (2.17) and (2.18), we obtain 

az2 a at 
W 

az 
n = 1,2,3, . . . . 

(2.15) A@‘fz,t) = 

Using the Green’s function of equation (2.15), 
$&j jiroj,(f.irip [-(x 

0 

G(z,t ; Z’J’), 

G(z,t; z’,t’) = 2(,/7c) a exp - ~(~t~z~,~ 1 
+&$)tj F+b,exp[-rf 

$ J(t - t’) 

to satisfy the boundary conditions (2.13), we 
obtain the solution of equation (2.15) as - 2a6,(t - t’) exp dt’ (2.20) 

@‘)(z,t) = 4(4x) abdt’ [r 5 K{Z 
[-(1/2Ja)l[z/J(r-f’)1 

+ 2J[a(t - t’)] z’,t’} exp [-z’“] 

x dz’ + j K{z - 2J[a(t - t’)] z’, 
(lPJa)[r/,e- 1’11 

t’} exp [ - z”] dz’l] + 1 

where 6, = BtZO [ = 0.656 J(p,/v)]. In the case 
of nucleate boiling of saturated pure water, 
the second term in the square brackets in the 
right-hand side of the above equation is neg- 
ligibly small compared with the first term, so 
that the temperature field contributing to the 
generation of an embryonic bubble can be 
expressed approximately as 

z/[WW)l 

- (2/47d s exp [-[‘I d5 (2.16) 
O(z,t) = 1 - $ & 1 

0 

where 

1 
K(z,t) = ___ 

Z2 

%/(d 

w(Z,t) ew - 4at . 

[ 1 
Denoting the first term in the right-hand side 
of equation (2.16) as A@l)(z,t) and substituting 
equation (2.7) into equation (2.16) yield 

or, if we use equation (2.19), 

WJ) = 1 - j71@) 
l 1p _yFJ(E$L] 

+ O(z2) (2.21’) 

In the other case of large w where the con- 
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vection term mainly governs the temperature 
field, using equation (2.2) for w and neglecting 
the viscous effect, we can solve equation (2.12) 
by the procedure of variable separation. Put 

KG) = 1 - (2/Jx) 1 exp [-t’] (2.22) 

and g(0) = 0, so that 8 satisfies the initial and 
boundary conditions (2.13). Then, equation 
(2.12) becomes 

dg 
z - 4pg = 1 

which yields 

g(t) = exp [j 4/I(t’) dt’] i exp [ - i 4j?(t”) 
0 0 

x dt”] dt’ (2.23) 

Using equation (2.18), equation (2.23) is re- 
duced to 

s(t) = exp [ - (4/3,/Y) e- “I j exp [ - (4PolN 
0 

x e-y”] dt’ = exp [-(4bo/y)e-Y’] 

x (1 - e-2yr) + . . . . II 
or, with equation (2.19), 

(2.24) 

&)=exp[-3exp(-4$t)]/ 

0 

x exp[3exp (- 4gr’)] dt’. (2.24’) 

If the free energy of the system is kept constant 
before and after the appearance of an embryonic 
bubble, the Clausius-Clapeyron relation should 
hold between the pressure, pe, and the tempera- 
ture, T,, within the bubble at its generation, as 
we assumed in the assumption (4) ; 

Combining the above equation with equation 
(1.10) yields 

--- . (2.25) 

With the help of the relation between R, and z,, 

z, = R, cos cp, 

equation (2.25) can be rewritten as 

T 
0, = . 

z* cos (Pe 

T,,,- ~ze+z*coscpe (2.26) 

where 

2aTR z* = sg 
POOL 

From the assumption (4), an embryonic 
bubble cannot appear on the heating surface 
until equation (2.16) or (2.22) with z = z, 
satisfies equation (2.26). 8 given by equation 
(2.16) or (2.22) and 8, given by equation (2.26) 
decrease monotonically with increase of z,, so 
that equations (2.26) and (2.16) or (2.22) with 
z = z, have more than one solution with respect 
to z, (> 0) for a given time t. Among these times 
t, for which there is at least one possible solu- 
tion of ze( > 0), the minimum is called the most 
favourable time, t,, at which an embryonic 
bubble first appears. Substituting 6 expressed 
by equation (2.16) or (2.22) to a first-order 
approximation with respect to z into equation 
(2.26) with z = z, yields 

, 
zf - &nat) 

+ Jk4 
z* cos (Pi 2T, - T, 

1-A T,-T,= 
0 

A 3 (Jn)popt-+ 
or 

zf - Jbag(Ql 
[ 

z* cos (Pe 1 
’ (2.27) 

1 - Jb~g(t)l Z t? 

+ &cctg(t,] z* cos (Pe 2: 1 ff = 0. 
w s J 

Since t, is the minimum value of t for which 
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the above equation has real roots, z,, we obtain The growth rate of a bubble at the initial 

2 

time, (I&J,=, = R,, can be obtained as follows. 

&~r=) 1 From equation (1.27), 

4z* cos (P= 2T, - T, 

= 1-A T,-T, 
(2.28) CI= = ~=T/,cpT,cr + J%=K 

z, = f&cat=) 1 (2.33) 

or 
where V= and S, are the volume and the area of 
the liquid-vapour interface of the embryonic 

z* coscp, 2 

Jl%g(t=)l I 1 xlCF3cm x102cm~s 

= 4z* coscp, 
2T, - T, 
T _ T 
w S 

z, = &/[aEg(t=)] 
[ 

1 - z* cos (Pe 1 JCRc&=)l . i 

5” rP.O - 

(2.29) 
--I-- 

t 

For the nucleate boiling of saturated pure 
water, in which 

z* cos q, 4 J(mt,), z* cos qe 6 J[7rag(tej] 

equations (2.28) and (2.29) become 

&at=) = 4 1 - (JIr) $)& 
[ 

z* 
e 1 

4 bf4I@,,1= 4z* cos (Pe 
2T, - T, 

(2.31) bubble, respectively, and VI and Sr are repre- 
T,--T,’ sented as 

With the use of equation (2.19), equation (2.30) 
VI = ;(R= - z=)[2(2R= + z=)(& + ~1) is furthermore reduced to 

&%)=4(1-~ pJz* 

2T, - T, 
xcos(p= T,-T, 

From these equations, we obtain 

R=( = z=/cos cp,); 

+ We + z,W, + zdl 
S1 = 2n[R=(R, + zJ + R,(R= + z,)]. 

(2.3~) The substitution of equations (1.26), (1.32) and 
(2.40’) into equation (2.33) yields 

z,, that is, 4e 

P=KCpTe 

R, = 2z* 
2T, - T, 

(2.32) x 
2 - 2cosq= + cos2(P= 

L - T, 2 + cos (P= - cos2 (P= 

2T, - T, 
’ coscp= T,- T, (2.30) 

r,-r deQc 
FIG. 5. Initial radiusand growth rate vs. superheat. 

which is illustrated in Fig. 5 for saturated pure 
water. 

-;A( +-&H)]2. (2.34) 
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If we assume that the temperature gradient at where osv and bls are the surface tensions 

the liquid-vapour interface of a bubble is on an acting on the solid-vapour interface and the 

average equal to that at z = ze, the amount of liquid-solid interface, respectively, and have the 

heat flow into the bubble through the interface relation 
at the embryonic instant can be written as (r S” = .Cls + 0 cos ‘PO. 

Using this relation and 
(2.35) 

N”U, = ; Ri(1 + cos cpo)2 (2 - cos cpo) 

Obtaining (aT/ih)ze,fe from equation (2.16) or 
J 

(2.22), we can get R, from equations (2.34) and 
(2.35) as 

yields 

(2.37) 

from which we obtain 

For saturated pure water, the second term in 
the square brackets in the right-hand side of the 
above equation is negligibly small compared 

The assumption (4) concerning the condition of 

with unity. Then, R,, can be written as 
the generation of a bubble implies (aAG/dR,=, 
= 0 which gives 

R = 25% z* 1 -- 
1 Lp, R,Z (1 + cos (~,)(2 - cos 4p,) cos (Pi’ 

(2.36‘) 

Figure 5 shows RI for saturated pure water with 
cos (Pe = 0.5. 

The initial velocity of a bubble, (io)t=o 
(= z i), can be considered as follows. Suppose 
that the number of molecules in the liquid 
state is N at an instant and that at the next 
moment N, molecules out of N turn into vapour 
so that NI molecules remain in the liquid state. 
Let the free energy of a molecule in the liquid 
state be ,u~ and that in the vapour state be p”. 
The change in the free energy of the system 
associated with evaporation, AG, is given by 

AG = N,(P” - PJ + (T 27~ R;(l + cos cpo) 

+ (q,, - CJ,J zR$, sin2 ‘p. 

3A 

If we assume that, at the embryonic instant of 
a bubble, the process should develop so as to 
minimize the free energy of the system, we 
obtain 

dAG 

C-1 dt f=O = 
0. 

With the use ofthe above two relations, equation 
(2.38) becomes 

*z. = 

0 (2.39) 

which means 

(io), = No), cos (Pe (2.40) 
or 

z1 = R, cosq,. (2.40’) 
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BUBBLE CYCLE 

From equation (1.28) with R, = zo, we can 
obtain the time interval from the appearance 
of an embryonic bubble to the departure of the 
bubble from the heating surface, t,, and the 
radius of the bubble at the departure, R,; 
namely, with the consideration of equation 

(1.33) 

t, = 7+, R, = odRe (3.1) 
1 

where 7d and g,, are the functions of cos (Pi. 
From equation (2.36), we obtain 

t, = 7*Re &$ f(cos q,) = 7&R: (3.2) 
s 

where f(cos cp,) is a function of cos rpe. From 
equations (3.1) and (3.2), we obtain the relation 
between t, and R, as 

Rd” od” 
-=-. 

td 7; 

(3.3) 

Since z,, can be expressed from equation 
(1.40) as 

t 
z,, = R,- 

td 

id becomes from equation (3.3) 

0; 1 
id=-T. 

7; Rd 

(3.4) 

This relation has been observed in the experi- 
mental study carried out by Isshiki [5] to hold 
approximately. 

Concerning the radius of a bubble at depar- 
ture, Rd, equation (1.38) giVeS 

R, = 
T, - T, uR,T, 
J(m) LP, Jtd’ 

T, - T,, decreases, that is, as its radius at the 
embryonic moment, R,, increases, the value of 
n should be larger than 2. If we assume Rd = 
odRe similar to equation (3.1), we obtain n = 4, 
that is, R,j cc td [cf. equation (3.3)], which has a 
much greater deviation from the experimental 
results than equation (3.3) has, so that a more 
careful examination has to be directed equation 
(1.38). 

The time interval from the departure of a 
bubble to the appearance of the next bubble, 
t,, can be obtained from equation (2.28) or 
(2.29). When the temperature field is governed 
mainly by the conduction effect, we obtain from 
equation (2.28) or (2.30) 

4 
t, = --OS-‘cp,.R,2 E z;R,Z. (3.6) 

7ccr 

On the other hand, when the field is dominated 
by the convection effect, from equation (2.24) 
with b z przo, that is, 

g(t) = J- (e4@ 
4P 

- 1) z -$(4/h) 

and /3 cc R; 3, we obtain 

t, = 7$-(l/“) 

and for sufficiently large values of fit, 

t, = 7;R,3 . (3.7) 

Finally, the complete cyclic period of the 
process of nucleation, growth, and departure 
can be found from equations (3.2) and (3.7) 
when the convection effect is associated with 
the motion of bubble as 

R,” od” 
=--- 

k + td 7; + 7; 
(3.8) 

If we put and from equations (3.2) and (3.6) when the 

r,, K KG conduction effect is predominant as 

the above equation yields Rd’ 0: -= (3.9) 
Rd a Rr-2)12. (3.5) & + td 7; +  R,7; ’ 

Since the usual results of experimental investiga- Figure 6 shows experimental results of the 
tion show that the radius of a bubble at depar- relation between the radius of a bubble at 
ture, R,, increases as the temperature difference, departure and the cyclic period. It is shown from 
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the figure that, as the radius of the bubble and departure, is studied fluid-dynamically and 
decreases, that is, at the higher superheat, the thermodynamically to account for its mech- 
features of the experimental results approach anism. 

IOU 
04 05 I-O 

26 
FIG. 6. Frequency of bubble cycle vs. departure 

radius. 
0: reference [5]; @ : reference [8]; x reference 

[9]; n = R#, + td) = constant. 

the relation expressed by equation (3.9) or 
(3.Q while Jakob’s relation 

R, - = constant 
& + td 

(3.10) 

holds satisfactorily for larger values of the 
radius, that is, at the lower superheat. For the 
larger values of the radius, the acceleration of 
gravity should be taken into consideration to 
account for the mechanism of boiling, as has 
been done by Han [lo]. The mechanism of 
boiling considered from the fluid-dynamical 
point of view could be more predominant for 
the smaller values of the radius, i.e. at the higher 
superheat. 

CONCLUSIONS 

The process of nucleate boiling from a solid 
superheated surface, bubble generation, growth 

The asymmetry of the fluid-dynamical field 
associated with the existence of a solid heating 
surface causes a bubble to move away from the 
surface, with a nearly constant speed, while the 
surface area of the bubble increases linearly 
with respect to time. The time interval between 
the generation and departure of a bubble is 
proportional to the third power of the radius 
of the bubble at departure. Consideration of the 
velocity and temperature fields in the vicinity 
of the heating surface provides a relation be- 
tween the period of the bubble cycle and the 
amount of superheat. The period is proportional 
to the third power of the radius of the bubble 
at departure when the fields interact strongly 
with each other, and to the second power when 
they do not. The radius of the bubble at depar- 
ture is inversely proportional to the amount of 
superheat. 
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R&n&-Le mecanisme de l’ebullition nuclCCe a partir d’une surface surchauffee est etudie du point de 
vue de la dynamique des fluides et de la thermodynamique. 

La dissymttrie du champ dynamique associt a l’existence d’une surface chauffante provoque l’tloigne- 
ment des bulles de la surface a une vitesse presque constante, tandis que la superticie des bulles croit 
lineairement en fonction du temps. L’intervalle de temps entre la formation d’une bulle et son detachement 
est proportionnel au cube de son rayon. Si l’on considtre les champs de vitesse et de temperature au voisin- 
age de la surface chauffante, on obtient une relation entre la periode du cycle des bulles et la valeur de la 
surchauffe. La periode est proportionnelle au cube du rayon de la bulle, lorsqu’il y aura une interaction 
importante entre les champs, et au carrt du rayon, lorsqu’il n’y en a pas. Le rayon d’une bulle est inverse- 

ment proportionnel a la valeur de la surchauffe. 

Zusammenfassung-Der Mechanismus des Blasensiedens an einer tiberhitzten Fllche wird tliissigkeits- 
dynamisch und thermodynamisch untersucht. 

Die Asymmetrie des fltissigkeitsdynamischen Feldes zusammen mit der Heiztlache bewirken die 
Abliisung der Blasen von der Oberfllche mit nahezu konstanter Geschwindigkeit, wlhrend die Oberfllche 
der Blase hinsichtlich der Zeit linear zunimmt. Das Zeitintervall zwischen Blasenbildung und Abreissen ist 
proportional der dritten Potenz des Blasenradius. Die Betrachtung der Geschwindigkeits- und Temperatur- 
felder in der Umgebung der Heizflache vermittelt eine Beziehung zwischen der Periode des Blasenwechsels 
und der G&se der tiberhitzung. Die Periode ist proportional der dritten Potenz des Blasenradius, wenn 
die Felder sich stark beeinflussen und proportional der zweiten Potenz, wenn sic es nicht tun. Der Blasen- 

radius ist umgekehrt proportional der G&se der Uberhitzung. 

AHam-llpoBeneH0 Tepxo~nanni9ecKoe II ru~powHardnsecKoe UccnenoBaKue Mexa- 

HEaMa nyablpbKOBOr0 KuneHuR HaneperpeTOfi nOBepXHOCTu. 
HaJrusuenosepxKocTunarpeBacoa~aeTacummeTpu~ru~po~uHamu~ecKorononK,KoTopax 

B~~HBaeT~Bu~eHueny~~pbKOBOTnOBepXHOCTuCn04TunOCTORHHOZtCKOpOCTbH),an~O~a~b 
nOBepXHOCTu ny8blpKOB JIuHetiHO BOapaCTaeT CO BpeMeIieM. nepuOA BpeMeHU MemAy o6pa- 

aoBaHuerdnyabIpbKauero0Tpbl~0~ nponopquoeaneHpa~uycynyablpbKa~TpeTbeBcTeneHu. 
Ikcne~oBaHue nonei cKopocTef4 u TehfnepaTyp B6nuau noBepxHocTu Karpesa noaBonfieT 
nonysuTb cooTKoweuue, cBKablBaro~ee BpeMK paaBuTafl nyabIpbKa u Benuwiay neperpesa. 

&Ill CuJlbHOM BaauMOAetiCTBuU nOJIeti aTOT nepUOA npOnOpLViOHaJleH paAUycy nyabIpbHa B 
TpeTbeiiCTeneHU,UpaAUyCynyaISpbKaBOBTOpOtiCTeneHU npuOTCyTCTBUu BaaUMOAeiCTBUH 

nonett. Pa~uyc nyablpbKaO6paTHO nponopquouaJIeH neperpeBy. 


